Suites numériques

Exercice 1.

Les assertions suivantes sont elles vraies ou fausses?

- 1. Si une suite positive est non majorée elle tend vers $+\infty$.
- [2.] Toute suite convergente est bornée.
- [3.] Toute suite bornée est convergente.
- Toute suite monotone est convergente.

Exercice 2.

Soit $(u_n)_n$ une suite à valeurs dans \mathbb{Z} .

Montrer que $(u_n)_n$ converge si, et seulement si, elle est stationnaire.

Exercice 3.

Étudier les limites des suites suivantes : $\cos \frac{n}{n!}\;;\;\;\cos(n)\sin(\frac{1}{n})\;;\;\;\frac{n^2+(-1)^n}{2n^2+n}\;;\;\;\sum_{k=1}^n\frac{1}{\sqrt{k}}.$

Exercice 4.

Soit $(u_n)_n$ la suite définie par $u_0 = -1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \sqrt{1 + u_n}$.

[1.] Montrer que cette suite est bien définie.

On pose
$$\alpha = \frac{1+\sqrt{5}}{2}$$
.

- [2.] Vérifier que $\sqrt{1+\alpha} = \alpha$.
- [3.] Montrer que $\forall n \in \mathbb{N}^*$, $0 \le u_n \le \alpha$.
- 4. Montrer que la suite $(u_n)_n$ est croissante.
- En déduire que $(u_n)_n$ et convergente et déterminer sa limite.

Exercice 5.

Soit $(u_n)_n$ une suite numérique

Montrer que si les suites $(u_{2n})_n$, $(u_{2n+1})_n$ et $(u_{3n})_n$ sont convergentes, alors la suite $(u_n)_n$ converge.

Exercice 6.

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ la fonction définie par $f(x) = x + \sqrt{x}$.

- $\boxed{1.}$ Montrer que f est bijective.
- 2. Montre que pour tout $n \in \mathbb{N}$, il existe un unique $x_n \in \mathbb{R}_+$ tel que $x_n + \sqrt{x_n} = n$. Déterminer x_0 .
- 3. Montre que la suite $(x_n)_n$ est strictement croissante.
- 4. En déduire que $(x_n)_n$ admet une limite, que l'on déterminera.
- [5.] Montrer que $\lim_{n \to \infty} \frac{x_n}{n} = 1.$

Exercice 7.

Soit $(u_n)_n$ une suite réelle telle que $\forall n, m \in \mathbb{N}^*$ $0 \le u_{n+m} \le \frac{n+m}{nm}$. Montrer que $(u_n)_n$ converge.

Exercice 8.

Pour tout $n \in \mathbb{N}$ on pose :

 $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot n!}$. Montrer que les deux suites $(u_n)_n$ et $(v_n)_n$ sont adjacentes.

Exercice 9.

Montrer que la suite $(\sin n)_n$ diverge.

Exercice 10.

Soit a > 0 et $(u_n)_n$ la suite définie par $u_0 = a$ et $u_{n+1} = u_n + u_n^2$

- 1. Étudier la monotonie de $(u_n)_n$.
- 2. En déduire la limite de $(u_n)_n$.
- [3.] Démontrer que : $\forall n \in \mathbb{N}$, $u_n^2 \le u_{n+1}$ et $u_{n+1} + 1 \le (u_n + 1)^2$.
- 4. Démontrer que :

 $\forall n \in \mathbb{N}$, $u_n + 1 \le (1 + u_0)^{2^n}$. Pour $n \in \mathbb{N}$, on pose $v_n = u_n^{\frac{1}{2^n}}$ et $w_n = (u_n + 1)^{\frac{1}{2^n}}$.

- 4.1 Justifier ces définitions et montrer que $\forall n \in \mathbb{N}$, $v_n > 0$ et $w_n > 0$.
- 4.2 Démontrer que $(v_n)_n$ et $(w_n)_n$ convergent.
- 4.3 Montrer que $\lim_{n \to +\infty} \frac{v_n}{w_n} = 1$.
- 4.4 Montrer que les deux suites $(v_n)_n$ et $(w_n)_n$ sont adjacentes.

Exercice 11.

Pour $n \in \mathbb{N}^*$ on pose $u_n = \sum_{k=1}^n \frac{1}{k^2}$ et $v_n = u_n + \frac{1}{n}$.

Montrer que les suites $(u_n)_n$ et $(v_n)_n$ convergent vers la même limite.

Exercice 12 (Comparaison logarithmique).

Soient $(u_n)_n$ et $(v_n)_n$ deux suites à termes strictement positifs, telles que à partir d'une certain rang n_0 ;

 $\frac{u_{n+1}}{u_n} \leq \frac{u_{n+1}}{u_n}$

Montrer que la suite $(\frac{u_n}{v_n})_n$ est bornée.

Application : Montrer que pour tout a > 1, la suite $(\frac{a^n}{n!})_n$ tend vers 0.

Exercice 13.

Pour $n \in \mathbb{N}^*$, on pose $S_n = \sum_{k=1}^n \frac{(-1)^k}{k}$.

- 1. Montrer que les suites $(S_{2n})_n$ et $(S_{2n+1})_n$ sont adjacentes.
- 2. En déduire la convergence de $(S_n)_n$.

Exercice 14.

- 1. Soient a et b deux réels strictement positifs. Montrer que $\sqrt{ab} \le \frac{a+b}{2}$.
- 2. Montrer que si $0 < a \le b$, alors $a \le \frac{a+b}{2} \le b$ et $a \le \sqrt{ab} \le b$.
- 3. Soient u_0 et v_0 deux réels strictement positifs tels que $u_0 < v_0$, on définit deux suites $(u_n)_n$ et $(v_n)_n$ de la façon suivante $u_{n+1} = \sqrt{u_n v_n}$ et $v_{n+1} = \frac{u_n + v_n}{2}$
 - 3.1 Montrer que pour tout $n \in \mathbb{N}$; $u_n \le v_n$.
 - 3.2 Montrer que les deux suites $(u)_n$ et $(v_n)_n$ sont convergentes et quelles ont même limite.

Exercice 15.

Soient $(u_n)_n$ et $(v_n)_n$ deux suites à valeurs dans [0,1] telles que la suite $(u_nv_n)_n$ converge de limite 1. Montrer que les suites $(u_n)_n$ et $(v_n)_n$ sont convergentes.

Exercice 16.

Déterminer la suite réelle $(u_n)_n$ vérifiant : $4u_{n+2}-8u_{n+1}+3u_n$ avec $u_0=2$ et $\lim_{n\to+\infty}u_n=0$.

Donner une expression simple de $S_n = \sum_{k=0}^n u_k$, puis calculer $\lim_{n \to +\infty} S_n$.

Exercice 17.

Donner l'expression des suites réelles récurrente suivantes :

1.
$$u_0 = 3$$
, $u_1 = 2$ et $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} - u_n$.

$$\boxed{2.} \ u_0=0 \ , \ u_1=1 \ \text{et} \ \forall n \in \mathbb{N}, \ u_{n+2}=4u_{n+1}-3u_n.$$

3.
$$u_0 = 1$$
, $u_1 = 2$ et $\forall n \in \mathbb{N}$, $u_{n+2} = -2u_{n+1} - u_n$.