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Avant-propos

This course workbook (version %-course) is intended for students of "Master
Mathematics and applications" at higher Normal School-Fez. It offers an incom-
plete course (without proofs) on commutative algebra: Rings and morphisms,
Modules, Localization, tensor product, Chains condition, Integral extension, Krull
dimension.
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Chapter 1

Rings and morphisms

1.1 Rings and morphisms

[Deﬁnition 1.1.]

Aring is a set with two binary operations (R, +, x) such that:

* (R, +) is an Abelian group .

o The multiplication x is associative, that is, for all a,b,c € R, a(bc) =
(ab)c.

o The multiplication x is distributive with respect to the addition +,
that is , for all a,b,c € A, (a+b)xc=axc+bxcetax (b+c) =
axb+axc.

The ring R unitary if, x has an identity element called the unit, and
denoteitby1g orl.

The ring R is commutative if the multiplication x is commutative.

Throughout this course by ring we mean a commutative ring with identity.

Let (A;);ecr be a family of rings. Define two binary operations on the Cartesian
product [];c A; as follow:

(Xier+ i)ier = (Xi v ¥dier, (Xi)ier(¥i)ier = (XiYidier

Then ([1;e7 Ai, +, x) is a commutative ring called the direct product of the rings
Aj,iel.

A ring is trivial if it is a singleton, in this case 1 = 0.

Let R be aring and a € R. We say that a is invertible if there exists b € R such
that ab = 1, in this case b is unique and it is denoted a~!. The set of invertible
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elements of R is denoted R* called the group of units. It is easy to see that R is
a group (with respect to multiplication).

[Deﬁnition 1.2.]

LetR bearingand a € R.

1. a is a zero-divisor if there exists a non zero element b € R such
that ab = 0. The set of zero-divisor is denoted Z(R).

2. a is a nilpotent element if there exists n € N such that a" = 0.

Remark:
1. Aninvertible element is not a zero-divisor.
2. If Ris anon trivial ring, any nilpotent element is a zero-divisor.

3. A zero divisor element is not necessarily a nilpotent element: (1,0) is a
zero divisor in the ring Z x Z, but it is not nilpotent.

[Deﬁnition 1.3.]

Aring R is an integral domain if;
1. R non trivial (1 #0),

2. Foralla,be R,ab=0—a=00rb=0.
Aring R is an integral domain if R is non trivial and Z(R) = {0}.

Example:
1. Zis an integral domain.
2. R[X] is an integral domain.

3. Z? isnot integral, since (1,0)(0,1) = 0.

[Deﬁnition 1.4.]

Aring R is a field if
1. R isnon trivial 1 #0),
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CHAPTER 1 : Rings and morphisms

2. R* = R\ {0}, that is every nonzero element is invertible.

If R is a field then R is an integral domain.

[Deﬁnition 1.5.]

Let R be aring and B be a subset of R. We say that B is a subring of R if,
(B, +) is a subgroup of (R, +), B is stable with respect to multiplication
and1 € B.

[Deﬁnition I.G.J

Let R and R' be arings and f : A— B. We say that f is a morphism of
rings if: foralla,be A, f(a+b) = f(a)+ f(b), f(ab) = f(a)f(b) and
f=1.

If f: R — R'is arings morphism then f(0) =0, f(a—b) = f(a) — f(b), moreover
if a is an invertible element of R then f(a) is invertible and (f(a))™! = f(a™1).
Let f: R — R’ be a morphism of rings. We say that f is an isomorphism if it is
bijective.

Two rings R and R’ are isomorphic if there is an isomorphism between them.

1.2 Ideals

[Deﬁnition 2.1.]

Let R be aring and I be a subset of R. We say that I is an ideal of R if;
1. Iisasubgroup of (R,+),

2. VaeR,Vxel, axel.

Remark:
1. {0} et R are ideals of R.

2. If Iis an ideal of R containing an invertible element, then I = R.
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1.2 Ideals

3. Anon trivial ring R is a field if and only if {0} and R are the only ideals of R.

[Proposition 2.2.]

LetR be aring.

e IfI and ] areideals of R, then I+ ] :={x+y/ (x,y)eIx J}isan
ideal of R called the sum of I and ]J.

o If(Iy)qer is a family of ideals of R, then Nyer Iy is an ideal of R.

Proof : ...
Let S be a subset of R. The intersection of all ideals of R containing S is an ideal
of R, and is called the ideal generated by S it is denoted (S). That is

(8) = N I
Iideal of R, I2S

[Proposition 2.3.]

Let R be aring and S be a nonempty subset of R, then
m
e (8)=%) aisi/m=1, a;€R,s;€Sp.
i=1

* (2)=1{0}.

n

Remark : If S = {s1,...,5,}, then (S) = {Z ais; | a; ER}, also it is denoted
i=1

(Sl)'-')sn)-

[Deﬁnition 2.4.]

Let R be aring.

1. Let I, ] be ideals of R. The product of I and ] denoted 1] is the
ideal generated by all elements ab, wherea€ I andbe ].

2. Let (Ig)qer be a family of ideals of R. The sum of the ideals 1,
a €T is the ideal generated by Uyer 1y it is denoted Z I

ael
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CHAPTER 1 : Rings and morphisms

m
The elements of 1] are Z aiby, where ai € I and by € J.
k=1
The elements of ) _ I are )_ aq, where aq € I, and all but finite set are zero.
ael ael

The product of a finitely many ideals I3, ..., I, is the ideal generated by all prod-
ucts a, - - a,, where ay € I.

[Deﬁnition 2.5.]

Let R be aring and I be an ideal of R.

1. Wesay that I is a principal ideal if it is generated by one element,
thatisI = (a), wherea € R.

2. We say that I is a finitely generated ideal if it is generated by a
finitely many elements, that is I = (ay,...,a,) whereay,...,a, €
R.

Example :

1. In the ring Z[X], the ideal I = {P € Z[X] / P(0) = 0} is principal. In fact
I=(X).

2. If I and J are finitely generated ideals, then so are IJ and I + J. In fact; ...

[Deﬁnition 2.6.J

Aring is a principal domain' if it is an integral domain and all its ide-
als are principal.

Examples :
1. Zis a principal domain.
2. R[X] is a principal domain.

Let I be an ideal of R. The quotient group R/I inherits a uniquely defined mul-
tiplication from R (X ¥ = Xy), which makes it a (commutative) ring, called the
quotient ring. Moreover, the maps 7 : R — R/ defined by n(x) = X is a rings
morphism.

Ut is quasi-principal if its ideals are principal (without integral condition).
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1.2 Ideals

[Proposition 2.7 ]

Let R be a ring and I be an ideal of R. The morphism: A — A/l
induce a bijection between ideal of R/ I and ideals of R containing I.

[Proposition 2.8.]

Let f : R — R’ be a rings morphism.

1. If ] is an ideal of R’ then f~'(J) is an ideal of R. In particular
ker f is an ideal of R.

2. Imf is a subring of R'.

[Theorem 2.9. (First isomorphism theorem)]

Let f : R — R’ be rings. Then the maps
f:Alker f —Imf, f(X) =f(x)

is well defined and is an isomorphism.

Remarks:

1. Second isomorphism theorem: Let R’ be a subring of a ring R and I be an
ideal of R. Then R’ + I is a subring of R, R'n I is an ideal of R, moreover
the rings (B+ I)/I et B/ (B n I) are isomorphic.

2. Third isomorphism theorem: Let R be aring and I < J be ideals of R. Then
J/1is an ideal of R/I, moreover the rings (R/I)/(J/I) and R/] are isomor-
phic.
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CHAPTER 1 : Rings and morphisms

1.3 Prime and maximal ideals

[Deﬁnition 3.1.]

Let R be aring.

1. Anideal P is a primeideal of R if P # R andVx,y€ A, xye P =
xePoryeP.

2. Anideal M is a maximal ideal of R if M # R and there is no ideal
I of R such that M c I c R (strict inclusion).

The set of prime ideals of R is called the prime spectrum of R and is
denoted Spec(R), whereas the set of maximal ideals of R is called max-
imal spectrum of R and is denoted MaxSpec(R) or Max(R).

Examples :
1. In the ring R[X] the ideal (X) is prime.

2. In the ring Z the ideal (3) is maximal.

3. In the ring Z?2 the ideal ((0,6)) is not a prime ideal.

[Proposition 3.2.J

Let R be a ring.

1. Anideal P is prime if and only if R/ P is an integral domain.

2. Anideal M is maximal if and only if R M is a field.

[Proposition 3.3.]

1. Amaximal ideal is a prime ideal.

2. Let f: R — R’ be a rings morphism. If P is a prime ideal of R’
then f~1(P) is a prime ideal of R.

Proof :
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1.3 Prime and maximal ideals

[Theorem 3.4. ( Krull)J

Let R be a non trivial ring i.e R # 0, then Max(R) # @. That is R con-
tains at last a maximal ideal.

Proof : (by Zorn's Lemima) ........oouviuiinniintinentiieineinin e eeieaaeanas

Corollary 3.5.

LetR be aring.

1. Every proper ideal (i.e # R) of R is contained in a maximal ideal.

2. Ifa € R isnoninvertible, then a is contained in a maximal ideal.

Remark: As aconsequence of the previous corollary;

A* = A\ M )
MeMax(A)

[Deﬁnition 3.6.]

Let R be a ring and P € Spec(R). We say that P is a minimal prime
ideal of R if it is minimal in the set Spec(R) with respect to inclusion,
that is if Q € Spec(R) such that Q < P then Q = P.

Examples :

1. (0) is aminimal prime ideal of Z. Moreover if R is an integral domain, then
(0) is a minimal prime ideal of R.

2. Z x {0} is a minimal prime ideal of Z x Z.

Theorem 3.7.

Let R be a ring and P € Spec(R). Then P contains at last a minimal

prime ideal.
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CHAPTER 1 : Rings and morphisms

Remarks:
1. Every non trivial ring has at last a minimal prime ideal.

2. A minimal prime ideal can contain strictly an ideal.

[Theorem 3.8. (Avoidance Lemma)]

LetR bearing, let Py,..., P, € Spec(R) and I be an ideal of R such that
I<U}_, P ThenIc P, forsomel <1< n.

[Theorem 3.9. (Intersection Lemme)]

Let R be a ring, let P € Spec(R) and 1, ..., I, be ideals of R such that
DZ=1 I, € P. Then there exists1 < | < n such that I; < P.

1.4 Radical

An element a € A is nilpotent if there exists n € N such that a” = 0. The set of
nilpotent elements of R is denoted Nil(R) called the nilradical of R. That is

Nil(R)={a€ R/ 3neN, a" =0}

[Proposition 4.1.]

Let R be aring. The nilradical of R is an ideal of R.

Theorem 4.2.

Let R be aring. Then
Nil(4)= ] P
PeSpec(A)
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1.4 Radical

Definition 4.3.]

Lett R be a ring and I be an ideal of R. The radical of I denoted \/I is;

VIi={ae Al3neN, a"el}

Examples :
1. V(0) = Nil(R).
2. Inthering Z, v/(8) = (2), and v/(24) = (6).

,—[Proposition 4.4.} |

Let R bearing and I, ] be ideals of R.

1. V1 is an ideal of R containing I.

N

. IfIC ], thenVI< V.
VVI=VI
NI =vInJ=VInV]J.

5 VI+T=\VI+V].

w

[N

Theorem 4.5.

Let R be aring and I be an ideal of R. Then

vVi= [ P

PeSpec(A),IcP

Definition 4.6.1

)
Let R be aring. The Jacobson radical of R denoted](R) is the ideal
JA:= [ M
MeMax(A)
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CHAPTER 1 : Rings and morphisms

Remark: Let R be aring, then Nil(R) < J(R).

[Proposition 4.7.]

Let R be a ring and a € R. Then a € J(R) if and only if for all x € 4,
1-axeR*. Thatis

J(R)={aeR/Vx€eR, 1-axeR"}

1.5 Exercises

Exercise 1.1

D

Let R be aring. Let (a, x) € Nil(R) x R*. Show that a+ x € R*.

Exercise 1.2

D

Let R be a ring and I be an ideal of R such that Np>11" = (0). Show
that foranyxel, 1+ x¢ Z(A).

Exercise 1.3

!

Let R be a ring, (Pg)qer be a family of prime ideals of R, and I =
Maer Pa. Show that VI =1.

Exercise 1.4

!

Let R be a ring such that for any x € R, there exists n = 2 such that
x"" = x. Show that every prime ideal is maximal.

Exercise 1.5

D

Let R be a ring such that every prime ideal is principal. We well show
that every ideal is principal. Assume the contrary, that is R has a non
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1.5 Exercises

principal ideal. Set
X ={Iidéalde R / I non principal
1. Show that X is a nonempty inductive set.
2. Deduce that X has a maximal element, say P.

3. Let x,y € R such that xy € P and x,y ¢ P. Set ] = P+ (y) et
J'=(P:))={ze Alz] < P}.

(a) Show that that ] et J' are principal ideals.
(b) Show that P = J]', deduce that P is principal.

4. Show that P is prime.

5. Conclusion.

,—‘ Exercise 1.6

Let Ry,...,Ry be a rings, R = Ry x ... x Ry, their direct product. For
1 < k < m, denote s : R — Ry the kth projection.

1. Forl1 <k <m,let I bean ideal of Ax. Show that I x ... x I, is
an ideal of R.

2. LetI be an ideal of R. Set I}, = si(I).

(a) Forl < k < m, show that I is an ideal of Ry..
(b) Showthatl=1; x...x I,.

3. Let P € Spec(A), write P = Py x ... x Py, where Py is an ideal of
Rg. For1 < k < m, denote ey, the element of R whose components
are all zero except the kth, which is equal to 1.

m
(a) Show that I;l ex=1(=14), exe; =0 ifk # l and €’ = ey.

(b) Show that there exists 1 < j < m such thate; ¢ P.
(¢) Letl<k<muwithk# j. Show that ey € P.

ENS-Fes @ Mohamed Aqalmoun

www.aqalmoun.com



CHAPTER 1 : Rings and morphisms

(d) Deduce that Py = Ay si k # j and that P is a prime ideal
Oij.

(e) Show thatifP isamaximal ideal of R then P jisa maximal
ideal of R;.

Exercise 1.7

D

Let R be an integral domain. Show that A[X] is an integral domain.

Exercise 1.8

D

Let R be a ring. Show that A[X] is a principal if and only if R is a field.

Exercise 1.9

!

n
LetR bearingand P = Z aka € A[X].
k=0

1. Show that P is invertible if and only if, ay is invertible and
ai,...,an are nilpotents.

2. Show that P is nilpotent if and only if the ay. are nilpotents.

3. Deduce that Nil(A[X]) = J(A[X]).

,—{ Exercise 1.10

Let R be aring and I be an ideal of R. Set

n
11X1=1). axX* e AIX1 1 n>0, are 1y
k=0

I[X] the set of polynomials with a coefficients in I.
1. Show that I1X] is an ideal of R[ X].

2. Show that A[X]/I[X] is isomorphic to (Al I)[X].

3. Deduce that I is prime if and only if 1[X] is prime.
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1.5 Exercises

Exercise 1.11

D

m
Let R be aring and 1,..., I, be ideals of R such that Z I. =R. Let
k=1

m
l,....lm €N. Show that Y I =R
k=1

Exercise 1.12

D

Let R bearing and I, ] be ideals of R.
1. Show that if VI] = AthenI=]=R.

2. Let P € Spec(R) such that 1] = P. Show that I =P or ] = P.

,—[Exercise 1.13 ( (Zarisky Topology))}

Let R be aring. For I ideal of R, denote V (I) the set of prime ideals of
R containing I, that is

V(I) = {P€Spec(R) / I P}
1. LettI be an ideal of R. Show that V(I) = V(\/1).

2. Lett 1, ] beideals of R. Show that V(1) = V(]) if and only if\/_:
V.

3. Show that V (0) = Spec(A) and V(A) = @.
4. Letl,] beideals of R. Show that V(In]) =V () uV(]).

5. Let (Iy)qer be a family of ideals of R. show that NgerV(Ily) =
VY 1.

ael
We deduce, from the previous properties, that there exists a
unique topology of Spec(R) whose closed subsets are the V()I,
where I is an ideal of R. this topology is called the Zariski Topol-
ogy on Spec(R). For I ideal of R denote D(I) = Spec(A)\ V() =
{P € Spec(A) / I £ P}.
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CHAPTER 1 : Rings and morphisms

6. Show that D((f)), where f € A form a basis” of open subsets with
respect to Zariski topology.

7. Show that Spec(A) is quasi-compact.

8. Let f € A. Show that D(f) = ¢ if and only if f € Nil(A).

Let f : A — B be a morphism of rings. denote f* : Spec(B) —
Spec(A) de maps defined for each P € Spec(B) by f*(P) =
7).

9. Let I be an ideal of R. Show thatf*_l(V(I)) = V(f(I)B) (where
f(D)B is that ideal of B generated by f(I)).

10. Deduce that f* is continuous.

11. LetI be an ideal of R. Show that Spec(A/I) is homeomorphic to
\740))}

%That is, stable under finite intersection and each open is union of elements of
this basis

,—{ Exercise 1.14

Let R be a ring, we endowed Spec(R) with the Zariski topology.
Show that Spec(A) est connected id and only if the only idempotent®
elements of R are0 et 1.

%An element a € R is idempotent if a® = a

,—{ Exercise 1.15

Let I be an ideal the ring R and P € Spec(R).
1. Show that {P} = V(P).

2. deduce that {P} is closed subset if and only if P € Max(R).
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Exercise 1.16

D

Let I be an ideal of R. Show that D(I) is quasi-compact if and only if
there exists ay, ..., a;, € R such that VI = Viay,...,an).

Exercise 1.17

!

Let R be a ring, let I be an ideal of R and a € R such that I + (a) and
(I:a):={x€ A/l xac I} are finitely generated.

1. Show that there exists di,...,d,, € I such that I+ (x) =

(dl»---rdM)x)-
m
2. Letx bean element of I of the formx = )_ aydi+rx € I. Justifies
k=1

thatre€ (P: a).

3. Deduce that I id finitely generated.

,—{ Exercise 1.18 }

Let R be a ring whose prime ideals are finitely generated. Set

X ={IlidéaldeR | I not finitely generated}
Assume that X is not empty.
1. Show that X has a maximal element P.
2. Show that there exists a,b € A such thatabe P and a,b ¢ P.
3. Show that P + (a) and (P : a) are finitely generated.
4. deduce that P is finitely generated.

5. Conclude.
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