Mohamed Aqalmoun

Commutative algebra

Module M03

ENS-FES

ENS-Fès **Mohamed Aqalmoun** www.aqalmoun.com

Avant-propos

This course workbook (version $\frac{1}{2}$ -course) is intended for students of "Master Mathematics and applications" at higher Normal School-Fez. It offers an incomplete course (without proofs) on commutative algebra: Rings and morphisms, Modules, Localization, tensor product, Chains condition, Integral extension, Krull dimension.

ENS-Fès **Mohamed Aqalmoun** www.aqalmoun.com

Contents

L	Rin	gs and morphisms	1
	1.1	Rings and morphisms	1
	1.2	Ideals	3
	1.3	Prime and maximal ideals	7
	1.4	Radical	9
	1.5	Exercises	11

6

ENS-Fès

Mohamed Aqalmoun

www.aqalmoun.com

Chapter 1

Rings and morphisms

1.1 Rings and morphisms

Definition 1.1.

A ring is a set with two binary operations $(R, +, \times)$ such that:

- (R, +) is an Abelian group.
- The multiplication \times is associative, that is, for all $a, b, c \in R$, a(bc) = (ab)c.
- The multiplication \times is distributive with respect to the addition +, that is , for all $a,b,c \in A$, $(a+b) \times c = a \times c + b \times c$ et $a \times (b+c) = a \times b + a \times c$.

The ring R unitary if, \times has an identity element called the unit, and denote it by 1_R or 1.

The ring R is commutative if the multiplication \times is commutative.

Throughout this course by **ring** we mean a commutative ring with identity. Let $(A_i)_{i \in I}$ be a family of rings. Define two binary operations on the Cartesian product $\prod_{i \in A_i} A_i$ as follow:

$$(x_i)_{i \in I} + (y_i)_{i \in I} = (x_i + y_i)_{i \in I}, (x_i)_{i \in I} (y_i)_{i \in I} = (x_i y_i)_{i \in I}$$

Then $(\prod_{i \in I} A_i, +, \times)$ is a commutative ring called the direct product of the rings $A_i, i \in I$.

A ring is trivial if it is a singleton, in this case 1 = 0.

Let R be a ring and $a \in R$. We say that a is invertible if there exists $b \in R$ such that ab = 1, in this case b is unique and it is denoted a^{-1} . The set of invertible

elements of R is denoted R^{\times} called the group of units. It is easy to see that R^{\times} is a group (with respect to multiplication).

Definition 1.2.

Let R be a ring and $a \in R$.

- 1. a is a zero-divisor if there exists a non zero element $b \in R$ such that ab = 0. The set of zero-divisor is denoted Z(R).
- 2. a is a nilpotent element if there exists $n \in \mathbb{N}$ such that $a^n = 0$.

Remark:

- 1. An invertible element is not a zero-divisor.
- 2. If *R* is a non trivial ring, any nilpotent element is a zero-divisor.
- 3. A zero divisor element is not necessarily a nilpotent element: (1,0) is a zero divisor in the ring $\mathbb{Z} \times \mathbb{Z}$, but it is not nilpotent.

Definition 1.3.

A ring R is an integral domain if;

- 1. R non trivial $(1 \neq 0)$,
- 2. For all $a, b \in R$, $ab = 0 \Longrightarrow a = 0$ or b = 0.

A ring *R* is an integral domain if *R* is non trivial and $Z(R) = \{0\}$.

Example:

- 1. \mathbb{Z} is an integral domain.
- 2. $\mathbb{R}[X]$ is an integral domain.
- 3. \mathbb{Z}^2 is not integral, since (1,0)(0,1)=0.

Definition 1.4.

A ring R is a field if

1. R is non trivial $(1 \neq 0)$,

2. $R^* = R \setminus \{0\}$, that is every nonzero element is invertible.

If *R* is a field then *R* is an integral domain.

Definition 1.5.

Let R be a ring and B be a subset of R. We say that B is a subring of R if, (B,+) is a subgroup of (R,+), B is stable with respect to multiplication and $1 \in B$.

Definition 1.6.

Let R and R' be a rings and $f: A \rightarrow B$. We say that f is a morphism of rings if: for all $a, b \in A$, f(a + b) = f(a) + f(b), f(ab) = f(a)f(b) and f(1) = 1.

If $f: R \to R'$ is a rings morphism then f(0) = 0, f(a - b) = f(a) - f(b), moreover if a is an invertible element of R then f(a) is invertible and $(f(a))^{-1} = f(a^{-1})$. Let $f: R \to R'$ be a morphism of rings. We say that f is an isomorphism if it is bijective.

Two rings R and R' are isomorphic if there is an isomorphism between them.

1.2 Ideals

Definition 2.1.

Let R be a ring and I be a subset of R. We say that I is an ideal of R if;

- 1. I is a subgroup of (R, +),
- 2. $\forall a \in R, \forall x \in I, ax \in I$.

Remark:

- 1. $\{0\}$ et R are ideals of R.
- 2. If *I* is an ideal of *R* containing an invertible element, then I = R.

3. A non trivial ring R is a field if and only if $\{0\}$ and R are the only ideals of R.

Proposition 2.2.

Let R be a ring.

- If I and J are ideals of R, then $I + J := \{x + y \mid (x, y) \in I \times J\}$ is an ideal of R called the sum of I and J.
- If $(I_{\alpha})_{\alpha \in \Gamma}$ is a family of ideals of R, then $\cap_{\alpha \in \Gamma} I_{\alpha}$ is an ideal of R.

Proof:

Let *S* be a subset of *R*. The intersection of all ideals of *R* containing *S* is an ideal of *R*, and is called the ideal generated by *S* it is denoted (*S*). That is

$$(S) = \bigcap_{I \text{ ideal of } R, I \supseteq S} I$$

Proposition 2.3.

Let R be a ring and S be a nonempty subset of R, then

•
$$(S) = \left\{ \sum_{i=1}^{m} a_i s_i / m \ge 1, \ a_i \in R, s_i \in S \right\}.$$

•
$$(\emptyset) = \{0\}.$$

Proof :

Remark : If $S = \{s_1, ..., s_n\}$, then $(S) = \left\{ \sum_{i=1}^n a_i s_i / a_i \in R \right\}$, also it is denoted $(s_1, ..., s_n)$.

Definition 2.4.

Let R be a ring.

- 1. Let I, J be ideals of R. The product of I and J denoted IJ is the ideal generated by all elements ab, where $a \in I$ and $b \in J$.
- 2. Let $(I_{\alpha})_{\alpha \in \Gamma}$ be a family of ideals of R. The sum of the ideals I_{α} , $\alpha \in \Gamma$ is the ideal generated by $\bigcup_{\alpha \in \Gamma} I_{\alpha}$ it is denoted $\sum_{\alpha \in \Gamma} I_{\alpha}$

CHAPTER 1: Rings and morphisms

The elements of IJ are $\sum_{k=1}^{m} a_k b_k$, where $a_k \in I$ and $b_k \in J$.

The elements of $\sum_{\alpha \in \Gamma} I_{\alpha}$ are $\sum_{\alpha \in \Gamma} a_{\alpha}$, where $a_{\alpha} \in I_{\alpha}$ and all but finite set are zero.

The product of a finitely many ideals I_1, \ldots, I_m , is the ideal generated by all products $a_1 \cdots a_m$, where $a_k \in I_k$.

Definition 2.5.

Let R be a ring and I be an ideal of R.

- 1. We say that I is a principal ideal if it is generated by one element, that is I = (a), where $a \in R$.
- 2. We say that I is a finitely generated ideal if it is generated by a finitely many elements, that is $I = (a_1, ..., a_n)$ where $a_1, ..., a_n \in$ R.

Example:

- 1. In the ring $\mathbb{Z}[X]$, the ideal $I = \{P \in \mathbb{Z}[X] / P(0) = 0\}$ is principal. In fact I = (X).
- 2. If *I* and *J* are finitely generated ideals, then so are *IJ* and I + J. In fact; ...

Definition 2.6.

A ring is a principal domain¹ if it is an integral domain and all its ideals are principal.

Examples:

- 1. \mathbb{Z} is a principal domain.
- 2. $\mathbb{R}[X]$ is a principal domain.

Let I be an ideal of R. The quotient group R/I inherits a uniquely defined multiplication from $R(\overline{x} \overline{y} = \overline{xy})$, which makes it a (commutative) ring, called the quotient ring. Moreover, the maps $\pi: R \to R/I$ defined by $\pi(x) = \overline{x}$ is a rings morphism.

 $^{^{1}}$ It is quasi-principal if its ideals are principal (without integral condition).

Proposition 2.7.

Let R be a ring and I be an ideal of R. The morphism $\pi: A \to A/I$ induce a bijection between ideal of R/I and ideals of R containing I.

Proof:.....

Proposition 2.8.

Let $f: R \to R'$ be a rings morphism.

- 1. If J is an ideal of R' then $f^{-1}(J)$ is an ideal of R. In particular $\ker f$ is an ideal of R.
- 2. Im f is a subring of R'.

Proof :

Theorem 2.9. (First isomorphism theorem)

Let $f: R \to R'$ be rings. Then the maps

$$\overline{f}: A/\ker f \to \operatorname{Im} f, \ \overline{f}(\overline{x}) = f(x)$$

is well defined and is an isomorphism.

Proof:.....

Remarks:

- 1. Second isomorphism theorem: Let R' be a subring of a ring R and I be an ideal of R. Then R' + I is a subring of R, $R' \cap I$ is an ideal of R, moreover the rings (B+I)/I et $B/(B\cap I)$ are isomorphic.
- 2. Third isomorphism theorem: Let R be a ring and $I \subseteq J$ be ideals of R. Then J/I is an ideal of R/I, moreover the rings (R/I)/(J/I) and R/J are isomorphic.

1.3 Prime and maximal ideals

Definition 3.1.

Let R be a ring.

- 1. An ideal P is a prime ideal of R if $P \neq R$ and $\forall x, y \in A$, $xy \in P \Rightarrow x \in P$ or $y \in P$.
- 2. An ideal M is a maximal ideal of R if $M \neq R$ and there is no ideal I of R such that $M \subset I \subset R$ (strict inclusion).

The set of prime ideals of R is called the prime spectrum of R and is denoted $\operatorname{Spec}(R)$, whereas the set of maximal ideals of R is called maximal spectrum of R and is denoted $\operatorname{MaxSpec}(R)$ or $\operatorname{Max}(R)$.

Examples:

- 1. In the ring $\mathbb{R}[X]$ the ideal (X) is prime.
- 2. In the ring \mathbb{Z} the ideal (3) is maximal.
- 3. In the ring \mathbb{Z}^2 the ideal ((0,6)) is not a prime ideal.

Proposition 3.2.

Let R be a ring.

- 1. An ideal P is prime if and only if R/P is an integral domain.
- 2. An ideal M is maximal if and only if R/M is a field.

Proof:

Proposition 3.3.

- 1. A maximal ideal is a prime ideal.
- 2. Let $f: R \to R'$ be a rings morphism. If P is a prime ideal of R' then $f^{-1}(P)$ is a prime ideal of R.

Proof:

ENS-Fès

Theorem 3.4. (Krull)

Let R be a non trivial ring i.e $R \neq 0$, then $Max(R) \neq \emptyset$. That is R contains at last a maximal ideal.

Proof: (by Zorn's Lemma)

Corollary 3.5.

Let R be a ring.

- 1. Every proper ideal (i.e \neq R) of R is contained in a maximal ideal.
- 2. If $a \in R$ is non invertible, then a is contained in a maximal ideal.

Proof:

Remark: As a consequence of the previous corollary;

$$A^{\times} = A \setminus \left(\bigcup_{M \in \text{Max}(A)} M \right)$$

Definition 3.6.

Let R be a ring and $P \in \operatorname{Spec}(R)$. We say that P is a minimal prime ideal of R if it is minimal in the set $\operatorname{Spec}(R)$ with respect to inclusion, that is if $Q \in \operatorname{Spec}(R)$ such that $Q \subseteq P$ then Q = P.

Examples:

- 1. (0) is a minimal prime ideal of \mathbb{Z} . Moreover if R is an integral domain, then (0) is a minimal prime ideal of R.
- 2. $\mathbb{Z} \times \{0\}$ is a minimal prime ideal of $\mathbb{Z} \times \mathbb{Z}$.

Theorem 3.7.

Let R be a ring and $P \in \operatorname{Spec}(R)$. Then P contains at last a minimal prime ideal.

Proof:

CHAPTER 1: Rings and morphisms

Remarks:

- 1. Every non trivial ring has at last a minimal prime ideal.
- 2. A minimal prime ideal can contain strictly an ideal.

Theorem 3.8. (Avoidance Lemma)

Let R be a ring, let $P_1, ..., P_n \in \operatorname{Spec}(R)$ and I be an ideal of R such that $I \subseteq \bigcup_{k=1}^n P_k$. Then $I \subseteq P_l$ for some $1 \le l \le n$.

Proof:....

Theorem 3.9. (Intersection Lemme)

Let R be a ring, let $P \in \operatorname{Spec}(R)$ and $I_1, ..., I_n$ be ideals of R such that $\bigcap_{k=1}^n I_k \subseteq P$. Then there exists $1 \le l \le n$ such that $I_l \subseteq P$.

Proof:

1.4 Radical

An element $a \in A$ is nilpotent if there exists $n \in \mathbb{N}$ such that $a^n = 0$. The set of nilpotent elements of R is denoted Nil(R) called the nilradical of R. That is

$$Nil(R) = \{ a \in R \mid \exists n \in \mathbb{N}, \ a^n = 0 \}$$

Proposition 4.1.

Let R be a ring. The nilradical of R is an ideal of R.

Proof:....

Theorem 4.2.

Let R be a ring. Then

$$Nil(A) = \bigcap_{P \in Spec(A)} P$$

Proof:.....

Definition 4.3.

Lett R be a ring and I be an ideal of R. The radical of I denoted \sqrt{I} is;

$$\sqrt{I} := \{ a \in A \mid \exists n \in \mathbb{N}, \ a^n \in I \}$$

Examples:

- 1. $\sqrt{(0)} = \text{Nil}(R)$.
- 2. In the ring \mathbb{Z} , $\sqrt{(8)} = (2)$, and $\sqrt{(24)} = (6)$.

Proposition 4.4.

Let R be a ring and I, J be ideals of R.

- 1. \sqrt{I} is an ideal of R containing I.
- 2. If $I \subseteq J$, then $\sqrt{I} \subseteq \sqrt{J}$.
- 3. $\sqrt{\sqrt{I}} = \sqrt{I}$.
- 4. $\sqrt{IJ} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.
- $5. \ \sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}}.$

Proof :

Theorem 4.5.

Let R be a ring and I be an ideal of R. Then

$$\sqrt{I} = \bigcap_{P \in \operatorname{Spec}(A), I \subseteq P} P$$

roof :

Definition 4.6.

Let R be a ring. The Jacobson radical of R denoted J(R) is the ideal

$$J(A) := \bigcap_{M \in Max(A)} M$$

Remark: Let *R* be a ring, then $Nil(R) \subseteq J(R)$.

Proposition 4.7.

Let R be a ring and $a \in R$. Then $a \in J(R)$ if and only if for all $x \in 4$, $1 - ax \in R^{\times}$. That is

$$J(R) = \{ a \in R \mid \forall x \in R, \ 1 - ax \in R^{\times} \}$$

Proof:

1.5 Exercises

Exercise 1.1

Let R be a ring. Let $(a, x) \in Nil(R) \times R^{\times}$. Show that $a + x \in R^{\times}$.

Exercise 1.2

Let R be a ring and I be an ideal of R such that $\cap_{n\geq 1} I^n = (0)$. Show that for any $x \in I$, $1+x \notin Z(A)$.

Exercise 1.3

Let R be a ring, $(P_{\alpha})_{\alpha \in \Gamma}$ be a family of prime ideals of R, and $I = \bigcap_{\alpha \in \Gamma} P_{\alpha}$. Show that $\sqrt{I} = I$.

Exercise 1.4

Let R be a ring such that for any $x \in R$, there exists $n \ge 2$ such that $x^n = x$. Show that every prime ideal is maximal.

Exercise 1.5

Let R be a ring such that every prime ideal is principal. We well show that every ideal is principal. Assume the contrary, that is R has a non

principal ideal. Set

 $X = \{I \ id\'{e}al \ de \ R \ / \ I \ non \ principal\}$

- 1. Show that X is a nonempty inductive set.
- 2. Deduce that X has a maximal element, say P.
- 3. Let $x, y \in R$ such that $xy \in P$ and $x, y \notin P$. Set J = P + (y) et $J' = (P : J) = \{z \in A \mid zJ \subseteq P\}$.
 - (a) Show that that J et J' are principal ideals.
 - (b) Show that P = JJ', deduce that P is principal.
- 4. Show that P is prime.
- 5. Conclusion.

Exercise 1.6

Let $R_1, ..., R_m$ be a rings, $R = R_1 \times ... \times R_m$ their direct product. For $1 \le k \le m$, denote $s_k : R \to R_k$ the kth projection.

- 1. For $1 \le k \le m$, let I_k be an ideal of A_k . Show that $I_1 \times ... \times I_m$ is an ideal of R.
- 2. Let I be an ideal of R. Set $I_k = s_k(I)$.
 - (a) For $1 \le k \le m$, show that I_k is an ideal of R_k .
 - (b) Show that $I = I_1 \times ... \times I_m$.
- 3. Let $P \in \operatorname{Spec}(A)$, write $P = P_1 \times ... \times P_m$, where P_k is an ideal of R_k . For $1 \le k \le m$, denote e_k the element of R whose components are all zero except the kth, which is equal to 1.
 - (a) Show that $\sum_{k=1}^{m} e_k = 1 (= 1_A)$, $e_k e_l = 0$ if $k \neq l$ and $e_k^2 = e_k$.
 - (b) Show that there exists $1 \le j \le m$ such that $e_i \notin P$.
 - (c) Let $1 \le k \le m$ with $k \ne j$. Show that $e_k \in P$.

- (d) Deduce that $P_k = A_k$ si $k \neq j$ and that P_j is a prime ideal of R_j .
- (e) Show that if P is a maximal ideal of R then P_j is a maximal ideal of R_j .

Exercise 1.7

Let R be an integral domain. Show that A[X] is an integral domain.

Exercise 1.8

Let R be a ring. Show that A[X] is a principal if and only if R is a field.

Exercise 1.9

Let R be a ring and $P = \sum_{k=0}^{n} a_k X^k \in A[X]$.

- 1. Show that P is invertible if and only if, a_0 is invertible and $a_1, ..., a_n$ are nilpotents.
- 2. Show that P is nilpotent if and only if the a_k are nilpotents.
- 3. Deduce that Nil(A[X]) = J(A[X]).

Exercise 1.10

Let R be a ring and I be an ideal of R. Set

$$I[X] = \{ \sum_{k=0}^{n} a_k X^k \in A[X] \ / \ n \ge 0, \ a_k \in I \}$$

I[X] the set of polynomials with à coefficients in I.

- 1. Show that I[X] is an ideal of R[X].
- 2. Show that A[X]/I[X] is isomorphic to (A/I)[X].
- 3. Deduce that I is prime if and only if I[X] is prime.

Exercise 1.11

Let R be a ring and $I_1, ..., I_m$ be ideals of R such that $\sum_{k=1}^m I_k = R$. Let $l_1, ..., l_m \in \mathbb{N}$. Show that $\sum_{k=1}^m I_k^{l_k} = R$

Exercise 1.12

Let R be a ring and I, J be ideals of R.

- 1. Show that if $\sqrt{IJ} = A$ then I = J = R.
- 2. Let $P \in \operatorname{Spec}(R)$ such that IJ = P. Show that I = P or J = P.

Exercise 1.13 ((Zarisky Topology))

Let R be a ring. For I ideal of R, denote V(I) the set of prime ideals of R containing I, that is

$$V(I) = \{ P \in \operatorname{Spec}(R) / I \subseteq P \}$$

- 1. Lett I be an ideal of R. Show that $V(I) = V(\sqrt{I})$.
- 2. Lett I, J be ideals of R. Show that V(I) = V(J) if and only if $\sqrt{I} = \sqrt{J}$.
- 3. Show that $V(0) = \operatorname{Spec}(A)$ and $V(A) = \emptyset$.
- 4. Let I, J be ideals of R. Show that $V(I \cap J) = V(I) \cup V(J)$.
- 5. Let $(I_{\alpha})_{\alpha \in \Gamma}$ be a family of ideals of R. show that $\cap_{\alpha \in \Gamma} V(I_{\alpha}) = V(\sum_{\alpha \in \Gamma} I_{\alpha})$.

We deduce, from the previous properties, that there exists a unique topology of $\operatorname{Spec}(R)$ whose closed subsets are the V()I, where I is an ideal of R. this topology is called the Zariski Topology on $\operatorname{Spec}(R)$. For I ideal of R denote $D(I) = \operatorname{Spec}(A) \setminus V(I) = \{P \in \operatorname{Spec}(A) \mid I \not\subseteq P\}$.

- 6. Show that D((f)), where $f \in A$ form a basis^a of open subsets with respect to Zariski topology.
- 7. Show that Spec(A) is quasi-compact.
- 8. Let $f \in A$. Show that $D(f) = \emptyset$ if and only if $f \in Nil(A)$. Let $f : A \to B$ be a morphism of rings. denote $f^* : Spec(B) \to Spec(A)$ de maps defined for each $P \in Spec(B)$ by $f^*(P) = f^{-1}(P)$.
- 9. Let I be an ideal of R. Show that $f^{*-1}(V(I)) = V(f(I)B)$ (where f(I)B is that ideal of B generated by f(I)).
- 10. Deduce that f^* is continuous.
- 11. Let I be an ideal of R. Show that Spec(A/I) is homeomorphic to V(I)

 a That is, stable under finite intersection and each open is union of elements of this basis

Exercise 1.14

Let R be a ring, we endowed $\operatorname{Spec}(R)$ with the Zariski topology. Show that $\operatorname{Spec}(A)$ est connected id and only if the only idempotent^a elements of R are 0 et 1.

^aAn element $a \in R$ is idempotent if $a^2 = a$

Exercise 1.15

Let I be an ideal the ring R and P \in Spec(*R*).

- 1. Show that $\overline{\{P\}} = V(P)$.
- 2. $deduce\ that\ \{P\}\ is\ closed\ subset\ if\ and\ only\ if\ P\in Max(R)$.

Exercise 1.16

Let I be an ideal of R. Show that D(I) is quasi-compact if and only if there exists $a_1, ..., a_m \in R$ such that $\sqrt{I} = \sqrt{(a_1, ..., a_m)}$.

Exercise 1.17

Let R be a ring, let I be an ideal of R and $a \in R$ such that I + (a) and $(I:a) := \{x \in A \mid xa \in I\}$ are finitely generated.

- 1. Show that there exists $d_1,...,d_m \in I$ such that $I + (x) = (d_1,...,d_m,x)$.
- 2. Let x be an element of I of the form $x = \sum_{k=1}^{m} \alpha_k d_k + rx \in I$. Justifies that $r \in (P:a)$.
- 3. Deduce that I id finitely generated.

Exercise 1.18

Let R be a ring whose prime ideals are finitely generated. Set

 $X = \{I \text{ id\'eal de } R \mid I \text{ not finitely generated}\}$

Assume that X is not empty.

- 1. Show that X has a maximal element P.
- 2. Show that there exists $a, b \in A$ such that $ab \in P$ and $a, b \notin P$.
- 3. Show that P + (a) and (P : a) are finitely generated.
- 4. deduce that P is finitely generated.
- 5. Conclude.