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Avant-propos

This course workbook (version 1
2 -course) is intended for students of "Master

Mathematics and applications" at higher Normal School-Fez. It offers an incom-
plete course (without proofs) on commutative algebra: Rings and morphisms,
Modules, Localization, tensor product, Chains condition, Integral extension, Krull
dimension.
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Chapter 1

Rings and morphisms

1.1 Rings and morphisms

Definition 1.1.

A ring is a set with two binary operations (R,+,×) such that:
• (R,+) is an Abelian group .
• The multiplication × is associative, that is, for all a,b,c ∈ R, a(bc) =
(ab)c.
• The multiplication × is distributive with respect to the addition +,
that is , for all a,b,c ∈ A, (a + b) × c = a × c + b × c et a × (b + c) =
a ×b +a × c.
The ring R unitary if, × has an identity element called the unit, and
denote it by 1R or 1.
The ring R is commutative if the multiplication × is commutative.

Throughout this course by ring we mean a commutative ring with identity.
Let (Ai )i∈I be a family of rings. Define two binary operations on the Cartesian
product

∏
i∈ Ai as follow:

(xi )i∈I + (yi )i∈I = (xi + yi )i∈I , (xi )i∈I (yi )i∈I = (xi yi )i∈I

Then (
∏

i∈I Ai ,+,×) is a commutative ring called the direct product of the rings
Ai , i ∈ I .
A ring is trivial if it is a singleton, in this case 1 = 0.
Let R be a ring and a ∈ R. We say that a is invertible if there exists b ∈ R such
that ab = 1, in this case b is unique and it is denoted a−1. The set of invertible
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1.1 Rings and morphisms

elements of R is denoted R× called the group of units. It is easy to see that R× is
a group (with respect to multiplication).

Definition 1.2.

Let R be a ring and a ∈ R.

1. a is a zero-divisor if there exists a non zero element b ∈ R such
that ab = 0. The set of zero-divisor is denoted Z(R).

2. a is a nilpotent element if there exists n ∈N such that an = 0.

Remark :

1. An invertible element is not a zero-divisor.

2. If R is a non trivial ring, any nilpotent element is a zero-divisor.

3. A zero divisor element is not necessarily a nilpotent element: (1,0) is a
zero divisor in the ring Z×Z, but it is not nilpotent.

Definition 1.3.

A ring R is an integral domain if;

1. R non trivial (1 ̸= 0),

2. For all a,b ∈ R, ab = 0 =⇒ a = 0 or b = 0.

A ring R is an integral domain if R is non trivial and Z (R) = {0}.

Example :

1. Z is an integral domain.

2. R[X ] is an integral domain.

3. Z2 is not integral, since (1,0)(0,1) = 0.

Definition 1.4.

A ring R is a field if

1. R is non trivial (1 ̸= 0),
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CHAPTER 1 : Rings and morphisms

2. R× = R \ {0}, that is every nonzero element is invertible.

If R is a field then R is an integral domain.

Definition 1.5.

Let R be a ring and B be a subset of R. We say that B is a subring of R if,
(B ,+) is a subgroup of (R,+), B is stable with respect to multiplication
and 1 ∈ B.

Definition 1.6.

Let R and R ′ be a rings and f : A → B. We say that f is a morphism of
rings if: for all a,b ∈ A, f (a +b) = f (a)+ f (b) , f (ab) = f (a) f (b) and
f (1) = 1.

If f : R → R ′ is a rings morphism then f (0) = 0, f (a −b) = f (a)− f (b), moreover
if a is an invertible element of R then f (a) is invertible and ( f (a))−1 = f (a−1).
Let f : R → R ′ be a morphism of rings. We say that f is an isomorphism if it is
bijective.
Two rings R and R ′ are isomorphic if there is an isomorphism between them.

1.2 Ideals

Definition 2.1.

Let R be a ring and I be a subset of R. We say that I is an ideal of R if;

1. I is a subgroup of (R,+),

2. ∀a ∈ R, ∀x ∈ I , ax ∈ I .

Remark :

1. {0} et R are ideals of R.

2. If I is an ideal of R containing an invertible element, then I = R.
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1.2 Ideals

3. A non trivial ring R is a field if and only if {0} and R are the only ideals of R.

Proposition 2.2.

Let R be a ring.

• If I and J are ideals of R, then I + J := {x + y / (x, y) ∈ I × J } is an
ideal of R called the sum of I and J.

• If (Iα)α∈Γ is a family of ideals of R, then ∩α∈ΓIα is an ideal of R.

Proof : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Let S be a subset of R. The intersection of all ideals of R containing S is an ideal
of R, and is called the ideal generated by S it is denoted (S). That is

(S) = ⋂
I ideal of R, I⊇S

I

Proposition 2.3.

Let R be a ring and S be a nonempty subset of R, then

• (S) =
{

m∑
i=1

ai si / m ≥ 1, ai ∈ R, si ∈ S

}
.

• (;) = {0}.

Proof : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remark : If S = {s1, . . . , sn}, then (S) =
{

n∑
i=1

ai si / ai ∈ R

}
, also it is denoted

(s1, . . . , sn).

Definition 2.4.

Let R be a ring.

1. Let I , J be ideals of R. The product of I and J denoted I J is the
ideal generated by all elements ab, where a ∈ I and b ∈ J .

2. Let (Iα)α∈Γ be a family of ideals of R. The sum of the ideals Iα,
α ∈ Γ is the ideal generated by

⋃
α∈Γ Iα it is denoted

∑
α∈Γ

Iα
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CHAPTER 1 : Rings and morphisms

The elements of I J are
m∑

k=1
ak bk , where ak ∈ I and bk ∈ J .

The elements of
∑
α∈Γ

Iα are
∑
α∈Γ

aα, where aα ∈ Iα and all but finite set are zero.

The product of a finitely many ideals I1, . . . , Im , is the ideal generated by all prod-
ucts a1 · · ·am , where ak ∈ Ik .

Definition 2.5.

Let R be a ring and I be an ideal of R.

1. We say that I is a principal ideal if it is generated by one element,
that is I = (a), where a ∈ R.

2. We say that I is a finitely generated ideal if it is generated by a
finitely many elements, that is I = (a1, . . . , an) where a1, . . . , an ∈
R.

Example :

1. In the ring Z[X ], the ideal I = {P ∈ Z[X ] / P (0) = 0} is principal. In fact
I = (X ).

2. If I and J are finitely generated ideals, then so are I J and I + J . In fact; . . .

Definition 2.6.

A ring is a principal domain1if it is an integral domain and all its ide-
als are principal.

Examples :

1. Z is a principal domain.

2. R[X ] is a principal domain.

Let I be an ideal of R. The quotient group R/I inherits a uniquely defined mul-
tiplication from R (x y = x y), which makes it a (commutative) ring, called the
quotient ring. Moreover, the maps π : R → R/I defined by π(x) = x is a rings
morphism.

1It is quasi-principal if its ideals are principal (without integral condition).
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1.2 Ideals

Proposition 2.7.

Let R be a ring and I be an ideal of R. The morphism π : A → A/I
induce a bijection between ideal of R/I and ideals of R containing I .

Proof : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proposition 2.8.

Let f : R → R ′ be a rings morphism.

1. If J is an ideal of R ′ then f −1(J ) is an ideal of R. In particular
ker f is an ideal of R.

2. Im f is a subring of R ′.

Proof : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 2.9. (First isomorphism theorem)

Let f : R → R ′ be rings. Then the maps

f : A/ker f → Im f , f (x) = f (x)

is well defined and is an isomorphism.

Proof : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remarks :

1. Second isomorphism theorem: Let R ′ be a subring of a ring R and I be an
ideal of R. Then R ′+ I is a subring of R, R ′∩ I is an ideal of R, moreover
the rings (B + I )/I et B/(B ∩ I ) are isomorphic.

2. Third isomorphism theorem: Let R be a ring and I ⊆ J be ideals of R. Then
J/I is an ideal of R/I , moreover the rings (R/I )/(J/I ) and R/J are isomor-
phic.
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CHAPTER 1 : Rings and morphisms

1.3 Prime and maximal ideals

Definition 3.1.

Let R be a ring.

1. An ideal P is a prime ideal of R if P ̸= R and ∀x, y ∈ A, x y ∈ P ⇒
x ∈ P or y ∈ P.

2. An ideal M is a maximal ideal of R if M ̸= R and there is no ideal
I of R such that M ⊂ I ⊂ R (strict inclusion).

The set of prime ideals of R is called the prime spectrum of R and is
denoted Spec(R), whereas the set of maximal ideals of R is called max-
imal spectrum of R and is denoted MaxSpec(R) or Max(R).

Examples :

1. In the ring R[X ] the ideal (X ) is prime.

2. In the ring Z the ideal (3) is maximal.

3. In the ring Z2 the ideal ((0,6)) is not a prime ideal.

Proposition 3.2.

Let R be a ring.

1. An ideal P is prime if and only if R/P is an integral domain.

2. An ideal M is maximal if and only if R/M is a field.

Proof : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proposition 3.3.

1. A maximal ideal is a prime ideal.

2. Let f : R → R ′ be a rings morphism. If P is a prime ideal of R ′

then f −1(P ) is a prime ideal of R.

Proof :
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1.3 Prime and maximal ideals

Theorem 3.4. ( Krull)

Let R be a non trivial ring i.e R ̸= 0, then Max(R) ̸= ;. That is R con-
tains at last a maximal ideal.

Proof : (by Zorn’s Lemma) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Corollary 3.5.

Let R be a ring.

1. Every proper ideal (i.e ̸= R) of R is contained in a maximal ideal.

2. If a ∈ R is non invertible, then a is contained in a maximal ideal.

Proof : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Remark : As a consequence of the previous corollary;

A× = A \

( ⋃
M∈Max(A)

M

)

Definition 3.6.

Let R be a ring and P ∈ Spec(R). We say that P is a minimal prime
ideal of R if it is minimal in the set Spec(R) with respect to inclusion,
that is if Q ∈ Spec(R) such that Q ⊆ P then Q = P.

Examples :

1. (0) is a minimal prime ideal ofZ. Moreover if R is an integral domain, then
(0) is a minimal prime ideal of R.

2. Z× {0} is a minimal prime ideal of Z×Z.

Theorem 3.7.

Let R be a ring and P ∈ Spec(R). Then P contains at last a minimal
prime ideal.

Proof : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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CHAPTER 1 : Rings and morphisms

Remarks :

1. Every non trivial ring has at last a minimal prime ideal.

2. A minimal prime ideal can contain strictly an ideal.

Theorem 3.8. (Avoidance Lemma)

Let R be a ring, let P1, . . . ,Pn ∈ Spec(R) and I be an ideal of R such that
I ⊆⋃n

k=1 Pk . Then I ⊆ Pl for some 1 ≤ l ≤ n.

Proof : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 3.9. (Intersection Lemme)

Let R be a ring, let P ∈ Spec(R) and I1, . . . , In be ideals of R such that⋂n
k=1 Ik ⊆ P. Then there exists 1 ≤ l ≤ n such that Il ⊆ P.

Proof : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.4 Radical

An element a ∈ A is nilpotent if there exists n ∈ N such that an = 0. The set of
nilpotent elements of R is denoted Nil(R) called the nilradical of R. That is

Nil(R) = {a ∈ R / ∃n ∈N, an = 0}

Proposition 4.1.

Let R be a ring. The nilradical of R is an ideal of R.

Proof : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 4.2.

Let R be a ring. Then
Nil(A) = ⋂

P∈Spec(A)
P

Proof : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1.4 Radical

Definition 4.3.

Lett R be a ring and I be an ideal of R. The radical of I denoted
p

I is;

p
I := {a ∈ A / ∃n ∈N, an ∈ I }

Examples :

1.
p

(0) = Nil(R).

2. In the ring Z,
p

(8) = (2), and
p

(24) = (6).

Proposition 4.4.

Let R be a ring and I , J be ideals of R.

1.
p

I is an ideal of R containing I .

2. If I ⊆ J , then
p

I ⊆p
J .

3.
√p

I =p
I .

4.
p

I J =p
I ∩ J =p

I ∩p
J .

5.
p

I + J =
√p

I +p
J .

Proof : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 4.5.

Let R be a ring and I be an ideal of R. Then

p
I = ⋂

P∈Spec(A),I⊆P
P

Proof : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 4.6.

Let R be a ring. The Jacobson radical of R denoted J(R) is the ideal

J(A) := ⋂
M∈Max(A)

M
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CHAPTER 1 : Rings and morphisms

Remark : Let R be a ring, then Nil(R) ⊆ J (R).

Proposition 4.7.

Let R be a ring and a ∈ R. Then a ∈ J(R) if and only if for all x ∈ 4,
1−ax ∈ R×. That is

J (R) = {a ∈ R / ∀x ∈ R, 1−ax ∈ R×}

Proof : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.5 Exercises

Exercise 1.1

Let R be a ring. Let (a, x) ∈ Nil(R)×R×. Show that a +x ∈ R×.

Exercise 1.2

Let R be a ring and I be an ideal of R such that ∩n≥1I n = (0). Show
that for any x ∈ I , 1+x ̸∈ Z (A).

Exercise 1.3

Let R be a ring, (Pα)α∈Γ be a family of prime ideals of R, and I =⋂
α∈ΓPα. Show that

p
I = I .

Exercise 1.4

Let R be a ring such that for any x ∈ R, there exists n ≥ 2 such that
xn = x. Show that every prime ideal is maximal.

Exercise 1.5

Let R be a ring such that every prime ideal is principal. We well show
that every ideal is principal. Assume the contrary, that is R has a non
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1.5 Exercises

principal ideal. Set

X = {I idéal de R / I non principal}

1. Show that X is a nonempty inductive set.

2. Deduce that X has a maximal element, say P.

3. Let x, y ∈ R such that x y ∈ P and x, y ̸∈ P. Set J = P + (y) et
J ′ = (P : J ) = {z ∈ A /z J ⊆ P }.

(a) Show that that J et J ′ are principal ideals.

(b) Show that P = J J ′, deduce that P is principal.

4. Show that P is prime.

5. Conclusion.

Exercise 1.6

Let R1, . . . ,Rm be a rings, R = R1 × . . .×Rm their direct product. For
1 ≤ k ≤ m, denote sk : R → Rk the kth projection.

1. For 1 ≤ k ≤ m, let Ik be an ideal of Ak . Show that I1 × . . .× Im is
an ideal of R.

2. Let I be an ideal of R. Set Ik = sk (I ).

(a) For 1 ≤ k ≤ m, show that Ik is an ideal of Rk .

(b) Show that I = I1 × . . .× Im .

3. Let P ∈ Spec(A), write P = P1 × . . .×Pm , where Pk is an ideal of
Rk . For 1 ≤ k ≤ m, denote ek the element of R whose components
are all zero except the kth, which is equal to 1.

(a) Show that
m∑

k=1
ek = 1(= 1A), ek el = 0 if k ̸= l and e2

k = ek .

(b) Show that there exists 1 ≤ j ≤ m such that e j ̸∈ P.

(c) Let 1 ≤ k ≤ m with k ̸= j . Show that ek ∈ P.
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CHAPTER 1 : Rings and morphisms

(d) Deduce that Pk = Ak si k ̸= j and that P j is a prime ideal
of R j .

(e) Show that if P is a maximal ideal of R then P j is a maximal
ideal of R j .

Exercise 1.7

Let R be an integral domain. Show that A[X ] is an integral domain.

Exercise 1.8

Let R be a ring. Show that A[X ] is a principal if and only if R is a field.

Exercise 1.9

Let R be a ring and P =
n∑

k=0
ak X k ∈ A[X ].

1. Show that P is invertible if and only if, a0 is invertible and
a1, . . . , an are nilpotents.

2. Show that P is nilpotent if and only if the ak are nilpotents.

3. Deduce that Nil(A[X ]) = J(A[X ]).

Exercise 1.10

Let R be a ring and I be an ideal of R. Set

I [X ] = {
n∑

k=0
ak X k ∈ A[X ] / n ≥ 0, ak ∈ I }

I [X ] the set of polynomials with à coefficients in I .

1. Show that I [X ] is an ideal of R[X ].

2. Show that A[X ]/I [X ] is isomorphic to (A/I )[X ].

3. Deduce that I is prime if and only if I [X ] is prime.

ENS-Fès
13

Mohamed Aqalmoun
www.aqalmoun.com



w
w

w
.a

qa
lm

ou
n.

co
m

M
oh

am
ed

Aq
al

m
ou

n

1.5 Exercises

Exercise 1.11

Let R be a ring and I1, . . . , Im be ideals of R such that
m∑

k=1
Ik = R. Let

l1, . . . , lm ∈N. Show that
m∑

k=1
I lk

k = R

Exercise 1.12

Let R be a ring and I , J be ideals of R.

1. Show that if
p

I J = A then I = J = R.

2. Let P ∈ Spec(R) such that I J = P. Show that I = P or J = P.

Exercise 1.13 ( (Zarisky Topology))

Let R be a ring. For I ideal of R, denote V (I ) the set of prime ideals of
R containing I , that is

V (I ) = {P ∈ Spec(R) / I ⊆ P }

1. Lett I be an ideal of R. Show that V (I ) =V (
p

I ).

2. Lett I , J be ideals of R. Show that V (I ) =V (J ) if and only if
p

I =p
J .

3. Show that V (0) = Spec(A) and V (A) =;.

4. Let I , J be ideals of R. Show that V (I ∩ J ) =V (I )∪V (J ).

5. Let (Iα)α∈Γ be a family of ideals of R. show that ∩α∈ΓV (Iα) =
V (

∑
α∈Γ

Iα).

We deduce, from the previous properties, that there exists a
unique topology of Spec(R) whose closed subsets are the V ()I ,
where I is an ideal of R. this topology is called the Zariski Topol-
ogy on Spec(R). For I ideal of R denote D(I ) = Spec(A) \ V (I ) =
{P ∈ Spec(A) / I ̸⊆ P }.
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CHAPTER 1 : Rings and morphisms

6. Show that D(( f )), where f ∈ A form a basisa of open subsets with
respect to Zariski topology.

7. Show that Spec(A) is quasi-compact.

8. Let f ∈ A. Show that D( f ) =; if and only if f ∈ Nil(A).

Let f : A → B be a morphism of rings. denote f ∗ : Spec(B) →
Spec(A) de maps defined for each P ∈ Spec(B) by f ∗(P ) =
f −1(P ).

9. Let I be an ideal of R. Show that f ∗−1(V (I )) = V ( f (I )B) (where
f (I )B is that ideal of B generated by f (I )).

10. Deduce that f ∗ is continuous.

11. Let I be an ideal of R. Show that Spec(A/I ) is homeomorphic to
V (I )

aThat is, stable under finite intersection and each open is union of elements of
this basis

Exercise 1.14

Let R be a ring, we endowed Spec(R) with the Zariski topology.
Show that Spec(A) est connected id and only if the only idempotenta

elements of R are 0 et 1.

aAn element a ∈ R is idempotent if a2 = a

Exercise 1.15

Let I be an ideal the ring R and P ∈ Spec(R).

1. Show that {P } =V (P ).

2. deduce that {P } is closed subset if and only if P ∈ Max(R).
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1.5 Exercises

Exercise 1.16

Let I be an ideal of R. Show that D(I ) is quasi-compact if and only if
there exists a1, . . . , am ∈ R such that

p
I =p

(a1, . . . , am).

Exercise 1.17

Let R be a ring, let I be an ideal of R and a ∈ R such that I + (a) and
(I : a) := {x ∈ A / xa ∈ I } are finitely generated.

1. Show that there exists d1, . . . ,dm ∈ I such that I + (x) =
(d1, . . . ,dm , x).

2. Let x be an element of I of the form x =
m∑

k=1
αk dk+r x ∈ I . Justifies

that r ∈ (P : a).

3. Deduce that I id finitely generated.

Exercise 1.18

Let R be a ring whose prime ideals are finitely generated. Set

X = {I idéal de R / I not finitely generated }

Assume that X is not empty.

1. Show that X has a maximal element P.

2. Show that there exists a,b ∈ A such that ab ∈ P and a,b ̸∈ P.

3. Show that P + (a) and (P : a) are finitely generated.

4. deduce that P is finitely generated.

5. Conclude.
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